Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Contextualized Music Semantics from Tags via a Siamese Network (1504.07968v2)

Published 29 Apr 2015 in cs.LG

Abstract: Music information retrieval faces a challenge in modeling contextualized musical concepts formulated by a set of co-occurring tags. In this paper, we investigate the suitability of our recently proposed approach based on a Siamese neural network in fighting off this challenge. By means of tag features and probabilistic topic models, the network captures contextualized semantics from tags via unsupervised learning. This leads to a distributed semantics space and a potential solution to the out of vocabulary problem which has yet to be sufficiently addressed. We explore the nature of the resultant music-based semantics and address computational needs. We conduct experiments on three public music tag collections -namely, CAL500, MagTag5K and Million Song Dataset- and compare our approach to a number of state-of-the-art semantics learning approaches. Comparative results suggest that this approach outperforms previous approaches in terms of semantic priming and music tag completion.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ubai Sandouk (4 papers)
  2. Ke Chen (241 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.