Domains of Attraction on Countable Alphabets (1504.06558v1)
Abstract: For each probability distribution on a countable alphabet, a sequence of positive functionals are developed as tail indices based on Turing's perspective. By and only by the asymptotic behavior of these indices, domains of attraction for all probability distributions on the alphabet are defined. The three main domains of attraction are shown to contain distributions with thick tails, thin tails and no tails respectively, resembling in parallel the three main domains of attraction, Gumbel, Frechet and Weibull families, for continuous random variables on the real line. In addition to the probabilistic merits associated with the domains, the tail indices are partially motivated by the fact that there exists an unbiased estimator for every index in the sequence, which is therefore statistically observable, provided that the sample is sufficiently large.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.