Papers
Topics
Authors
Recent
Search
2000 character limit reached

A new approach for physiological time series

Published 23 Apr 2015 in cs.LG and stat.ML | (1504.06274v1)

Abstract: We developed a new approach for the analysis of physiological time series. An iterative convolution filter is used to decompose the time series into various components. Statistics of these components are extracted as features to characterize the mechanisms underlying the time series. Motivated by the studies that show many normal physiological systems involve irregularity while the decrease of irregularity usually implies the abnormality, the statistics for "outliers" in the components are used as features measuring irregularity. Support vector machines are used to select the most relevant features that are able to differentiate the time series from normal and abnormal systems. This new approach is successfully used in the study of congestive heart failure by heart beat interval time series.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.