Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Empirical likelihood test for high-dimensional two-sample model (1504.05690v2)

Published 22 Apr 2015 in math.ST, stat.ME, and stat.TH

Abstract: A non parametric method based on the empirical likelihood is proposed for detecting the change in the coefficients of high-dimensional linear model where the number of model variables may increase as the sample size increases. This amounts to testing the null hypothesis of no change against the alternative of one change in the regression coefficients. Based on the theoretical asymptotic behaviour of the empirical likelihood ratio statistic, we propose, for a fixed design, a simpler test statistic, easier to use in practice. The asymptotic normality of the proposed test statistic under the null hypothesis is proved, a result which is different from the $\chi2$ law for a model with a fixed variable number. Under alternative hypothesis, the test statistic diverges. We can then find the asymptotic confidence region for the difference of parameters of the two phases. Some Monte-Carlo simulations study the behaviour of the proposed test statistic.

Summary

We haven't generated a summary for this paper yet.