Papers
Topics
Authors
Recent
Search
2000 character limit reached

Empirical likelihood test for high-dimensional two-sample model

Published 22 Apr 2015 in math.ST, stat.ME, and stat.TH | (1504.05690v2)

Abstract: A non parametric method based on the empirical likelihood is proposed for detecting the change in the coefficients of high-dimensional linear model where the number of model variables may increase as the sample size increases. This amounts to testing the null hypothesis of no change against the alternative of one change in the regression coefficients. Based on the theoretical asymptotic behaviour of the empirical likelihood ratio statistic, we propose, for a fixed design, a simpler test statistic, easier to use in practice. The asymptotic normality of the proposed test statistic under the null hypothesis is proved, a result which is different from the $\chi2$ law for a model with a fixed variable number. Under alternative hypothesis, the test statistic diverges. We can then find the asymptotic confidence region for the difference of parameters of the two phases. Some Monte-Carlo simulations study the behaviour of the proposed test statistic.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.