Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Rooted Cycle Bases (1504.04931v1)

Published 20 Apr 2015 in cs.DS

Abstract: A cycle basis in an undirected graph is a minimal set of simple cycles whose symmetric differences include all Eulerian subgraphs of the given graph. We define a rooted cycle basis to be a cycle basis in which all cycles contain a specified root edge, and we investigate the algorithmic problem of constructing rooted cycle bases. We show that a given graph has a rooted cycle basis if and only if the root edge belongs to its 2-core and the 2-core is 2-vertex-connected, and that constructing such a basis can be performed efficiently. We show that in an unweighted or positively weighted graph, it is possible to find the minimum weight rooted cycle basis in polynomial time. Additionally, we show that it is NP-complete to find a fundamental rooted cycle basis (a rooted cycle basis in which each cycle is formed by combining paths in a fixed spanning tree with a single additional edge) but that the problem can be solved by a fixed-parameter-tractable algorithm when parameterized by clique-width.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.