Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rational torsion points on Jacobians of modular curves (1504.04842v3)

Published 19 Apr 2015 in math.NT

Abstract: Let $p$ be a prime greater than 3. Consider the modular curve $X_0(3p)$ over $\mathbb{Q}$ and its Jacobian variety $J_0(3p)$ over $\mathbb{Q}$. Let $\mathcal{T}(3p)$ and $\mathcal{C}(3p)$ be the group of rational torsion points on $J_0(3p)$ and the cuspidal group of $J_0(3p)$, respectively. We prove that the $3$-primary subgroups of $\mathcal{T}(3p)$ and $\mathcal{C}(3p)$ coincide unless $p\equiv 1 \pmod 9$ and $3{\frac{p-1}{3}} \equiv 1 !\pmod {p}$.

Summary

We haven't generated a summary for this paper yet.