Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Permutation Symmetry Determines the Discrete Wigner Function (1504.03773v2)

Published 15 Apr 2015 in quant-ph, math-ph, and math.MP

Abstract: The Wigner function provides a useful quasiprobability representation of quantum mechanics, with applications in various branches of physics. Many nice properties of the Wigner function are intimately connected with the high symmetry of the underlying operator basis composed of phase point operators: any pair of phase point operators can be transformed to any other pair by a unitary symmetry transformation. We prove that, in the discrete scenario, this permutation symmetry is equivalent to the symmetry group being a unitary 2-design. Such a highly symmetric representation can only appear in odd prime power dimensions besides dimensions 2 and 8. It suffices to single out a unique discrete Wigner function among all possible quasiprobability representations. In the course of our study, we show that this discrete Wigner function is uniquely determined by Clifford covariance, while no Wigner function is Clifford covariant in any even prime power dimension.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com