Papers
Topics
Authors
Recent
2000 character limit reached

Phase transitions for scaling of structural correlations in directed networks

Published 7 Apr 2015 in physics.soc-ph, cs.SI, and math.PR | (1504.01535v2)

Abstract: Analysis of degree-degree dependencies in complex networks, and their impact on processes on networks requires null models, i.e. models that generate uncorrelated scale-free networks. Most models to date however show structural negative dependencies, caused by finite size effects. We analyze the behavior of these structural negative degree-degree dependencies, using rank based correlation measures, in the directed Erased Configuration Model. We obtain expressions for the scaling as a function of the exponents of the distributions. Moreover, we show that this scaling undergoes a phase transition, where one region exhibits scaling related to the natural cut-off of the network while another region has scaling similar to the structural cut-off for uncorrelated networks. By establishing the speed of convergence of these structural dependencies we are able to asses statistical significance of degree-degree dependencies on finite complex networks when compared to networks generated by the directed Erased Configuration Model.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.