Papers
Topics
Authors
Recent
Search
2000 character limit reached

Lower Bound For The Ratios Of Eigenvalues Of Schrödinger Equations With Nonpositive Single-Barrier Potentials

Published 1 Apr 2015 in math.SP | (1504.00660v3)

Abstract: Horv\'ath and Kiss [Proc. Amer. Math. Soc., 2005] proved the upper bound estimate $\frac{\lambda {n}}{\lambda _{m}}\leq \frac{n{2}}{m{2}}$ $ (n>m\geq 1) $ for Dirichlet eigenvalue ratios of the Schr\"odinger problem $-y''+q(x)y=\lambda y$ with nonnegative and single-well potential $q$. In this paper, we prove that if $q(x)$ is a nonpositive, continuous and single-barrier potential, then $\frac{\lambda{n}}{\lambda_{m}}\geq \frac{n{2}}{m{2}}$ for $\lambda_n>\lambda_m \geq -2q*$, where $q{\ast}=\min{q(0), q(1)}$. In particular, if $q(x)$ satisfies the additional condition $\mid q{\ast} \mid\leq \frac{\pi{2}}{3}$, then $\lambda _{1}>0$ and $\frac{\lambda _{n}}{\lambda _{m}}\geq \frac{n{2}%}{m{2}}$ for $n>m\geq 1.$ For this result, we develop a new approach to study the monotonicity of the modified Pr\"ufer angle function.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.