Papers
Topics
Authors
Recent
Search
2000 character limit reached

Derived varieties of complexes and Kostant's theorem for gl(m|n)

Published 1 Apr 2015 in math.AG and math.RT | (1504.00339v2)

Abstract: Given a graded vector space V, the variety of complexes Com(V) consists of all differentials making V into a cochain complex. This variety was first introduced by Buchsbaum and Eisenbud and later studied by Kempf, De Concini, Strickland and many other people. It is highly singular and can be seen as a proto-typical singular moduli space in algebraic geometry. We introduce a natural derived analog of Com(V) which is a smooth derived scheme RCom(V). It can be seen as classifying twisted complexes. We study the cohomology of the dg-algebra of regular functions om RCom(V). It turns out that the natural action of the group GL(V) (automorphisms of V as a graded space) on the cohomology has simple spectrum. This generalizes the known properties of Com(V) and the classical theorem of Kostant on the Lie algebra cohomology of upper triangular matrices.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.