Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

New results on the stopping time behaviour of the Collatz 3x + 1 function (1504.00212v4)

Published 29 Mar 2015 in math.GM

Abstract: Let $\sigma_n=\lfloor1+n\cdot\log_23\rfloor$. For the Collatz 3x + 1 function exists for each $n\in\mathbb{N}$ a set of different residue classes $(\text{mod}\ 2{\sigma_n})$ of starting numbers $s$ with finite stopping time $\sigma(s)=\sigma_n$. Let $z_n$ be the number of these residue classes for each $n\geq0$ as listed in the OEIS as A100982. It is conjectured that for each $n\geq4$ the value of $z_n$ is given by the formula \begin{align*} z_n=\frac{(m+n-2)!}{m!\cdot(n-2)!}-\sum_{i=2}{n-1}\binom{\big\lfloor\frac{3(n-i)+\delta}{2}\big\rfloor}{n-i}\cdot z_i, \end{align*} where $m=\big\lfloor(n-1)\cdot\log_23\big\rfloor-(n-1)$ and $\delta\in\mathbb{Z}$ assumes different values within the sum at intervals of 5 or 6 terms. This allows us to create an iterative algorithm which generates $z_n$ for each $n>6$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)