New results on the stopping time behaviour of the Collatz 3x + 1 function (1504.00212v4)
Abstract: Let $\sigma_n=\lfloor1+n\cdot\log_23\rfloor$. For the Collatz 3x + 1 function exists for each $n\in\mathbb{N}$ a set of different residue classes $(\text{mod}\ 2{\sigma_n})$ of starting numbers $s$ with finite stopping time $\sigma(s)=\sigma_n$. Let $z_n$ be the number of these residue classes for each $n\geq0$ as listed in the OEIS as A100982. It is conjectured that for each $n\geq4$ the value of $z_n$ is given by the formula \begin{align*} z_n=\frac{(m+n-2)!}{m!\cdot(n-2)!}-\sum_{i=2}{n-1}\binom{\big\lfloor\frac{3(n-i)+\delta}{2}\big\rfloor}{n-i}\cdot z_i, \end{align*} where $m=\big\lfloor(n-1)\cdot\log_23\big\rfloor-(n-1)$ and $\delta\in\mathbb{Z}$ assumes different values within the sum at intervals of 5 or 6 terms. This allows us to create an iterative algorithm which generates $z_n$ for each $n>6$.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.