Papers
Topics
Authors
Recent
2000 character limit reached

Measuring robustness of community structure in complex networks

Published 27 Mar 2015 in physics.soc-ph and cs.SI | (1503.08012v1)

Abstract: The theory of community structure is a powerful tool for real networks, which can simplify their topological and functional analysis considerably. However, since community detection methods have random factors and real social networks obtained from complex systems always contain error edges, evaluating the robustness of community structure is an urgent and important task. In this letter, we employ the critical threshold of resolution parameter in Hamiltonian function, $\gamma_C$, to measure the robustness of a network. According to spectral theory, a rigorous proof shows that the index we proposed is inversely proportional to robustness of community structure. Furthermore, by utilizing the co-evolution model, we provides a new efficient method for computing the value of $\gamma_C$. The research can be applied to broad clustering problems in network analysis and data mining due to its solid mathematical basis and experimental effects.

Citations (58)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.