Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Making the Most of Tweet-Inherent Features for Social Spam Detection on Twitter (1503.07405v1)

Published 25 Mar 2015 in cs.IR and cs.SI

Abstract: Social spam produces a great amount of noise on social media services such as Twitter, which reduces the signal-to-noise ratio that both end users and data mining applications observe. Existing techniques on social spam detection have focused primarily on the identification of spam accounts by using extensive historical and network-based data. In this paper we focus on the detection of spam tweets, which optimises the amount of data that needs to be gathered by relying only on tweet-inherent features. This enables the application of the spam detection system to a large set of tweets in a timely fashion, potentially applicable in a real-time or near real-time setting. Using two large hand-labelled datasets of tweets containing spam, we study the suitability of five classification algorithms and four different feature sets to the social spam detection task. Our results show that, by using the limited set of features readily available in a tweet, we can achieve encouraging results which are competitive when compared against existing spammer detection systems that make use of additional, costly user features. Our study is the first that attempts at generalising conclusions on the optimal classifiers and sets of features for social spam detection over different datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Bo Wang (823 papers)
  2. Arkaitz Zubiaga (88 papers)
  3. Maria Liakata (59 papers)
  4. Rob Procter (44 papers)
Citations (102)