Papers
Topics
Authors
Recent
Search
2000 character limit reached

Dual Polynomials for Collision and Element Distinctness

Published 25 Mar 2015 in cs.CC and quant-ph | (1503.07261v1)

Abstract: The approximate degree of a Boolean function $f: {-1, 1}n \to {-1, 1}$ is the minimum degree of a real polynomial that approximates $f$ to within error $1/3$ in the $\ell_\infty$ norm. In an influential result, Aaronson and Shi (J. ACM 2004) proved tight $\tilde{\Omega}(n{1/3})$ and $\tilde{\Omega}(n{2/3})$ lower bounds on the approximate degree of the Collision and Element Distinctness functions, respectively. Their proof was non-constructive, using a sophisticated symmetrization argument and tools from approximation theory. More recently, several open problems in the study of approximate degree have been resolved via the construction of dual polynomials. These are explicit dual solutions to an appropriate linear program that captures the approximate degree of any function. We reprove Aaronson and Shi's results by constructing explicit dual polynomials for the Collision and Element Distinctness functions.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.