Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Web Search Result Clustering based on Cuckoo Search and Consensus Clustering (1503.06609v1)

Published 23 Mar 2015 in cs.IR

Abstract: Clustering of web search result document has emerged as a promising tool for improving retrieval performance of an Information Retrieval (IR) system. Search results often plagued by problems like synonymy, polysemy, high volume etc. Clustering other than resolving these problems also provides the user the easiness to locate his/her desired information. In this paper, a method, called WSRDC-CSCC, is introduced to cluster web search result using cuckoo search meta-heuristic method and Consensus clustering. Cuckoo search provides a solid foundation for consensus clustering. As a local clustering function, k-means technique is used. The final number of cluster is not depended on this k. Consensus clustering finds the natural grouping of the objects. The proposed algorithm is compared to another clustering method which is based on cuckoo search and Bayesian Information Criterion. The experimental results show that proposed algorithm finds the actual number of clusters with great value of precision, recall and F-measure as compared to the other method

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mansaf Alam (39 papers)
  2. Kishwar Sadaf (2 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.