Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A note on a local limit theorem for Wiener space valued random variables (1503.06576v1)

Published 23 Mar 2015 in math.PR

Abstract: We prove a local limit theorem, i.e. a central limit theorem for densities, for a sequence of independent and identically distributed random variables taking values on an abstract Wiener space; the common law of those random variables is assumed to be absolutely continuous with respect to the reference Gaussian measure. We begin by showing that the key roles of scaling operator and convolution product in this infinite dimensional Gaussian framework are played by the Ornstein-Uhlenbeck semigroup and Wick product, respectively. We proceed by establishing a necessary condition on the density of the random variables for the local limit theorem to hold true. We then reverse the implication and prove under an additional assumption the desired L1-convergence of the density of \frac{X_1+...+X_n}{\sqrt{n}}. We close the paper comparing our result with certain Berry-Esseen bounds for multidimensional central limit theorems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.