Papers
Topics
Authors
Recent
2000 character limit reached

Real-time Dynamic MRI Reconstruction using Stacked Denoising Autoencoder

Published 22 Mar 2015 in cs.CV and cs.NE | (1503.06383v1)

Abstract: In this work we address the problem of real-time dynamic MRI reconstruction. There are a handful of studies on this topic; these techniques are either based on compressed sensing or employ Kalman Filtering. These techniques cannot achieve the reconstruction speed necessary for real-time reconstruction. In this work, we propose a new approach to MRI reconstruction. We learn a non-linear mapping from the unstructured aliased images to the corresponding clean images using a stacked denoising autoencoder (SDAE). The training for SDAE is slow, but the reconstruction is very fast - only requiring a few matrix vector multiplications. In this work, we have shown that using SDAE one can reconstruct the MRI frame faster than the data acquisition rate, thereby achieving real-time reconstruction. The quality of reconstruction is of the same order as a previous compressed sensing based online reconstruction technique.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.