Papers
Topics
Authors
Recent
2000 character limit reached

Identifying Similar Patients Using Self-Organising Maps: A Case Study on Type-1 Diabetes Self-care Survey Responses

Published 21 Mar 2015 in cs.CE and cs.AI | (1503.06316v1)

Abstract: Diabetes is considered a lifestyle disease and a well managed self-care plays an important role in the treatment. Clinicians often conduct surveys to understand the self-care behaviors in their patients. In this context, we propose to use Self-Organising Maps (SOM) to explore the survey data for assessing the self-care behaviors in Type-1 diabetic patients. Specifically, SOM is used to visualize high dimensional similar patient profiles, which is rarely discussed. Experiments demonstrate that our findings through SOM analysis corresponds well to the expectations of the clinicians. In addition, our findings inspire the experts to improve their understanding of the self-care behaviors for their patients. The principle findings in our study show: 1) patients who take correct dose of insulin, inject insulin at the right time, 2) patients who take correct food portions undertake regular physical activity and 3) patients who eat on time take correct food portions.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.