Papers
Topics
Authors
Recent
Search
2000 character limit reached

Implementation of a Practical Distributed Calculation System with Browsers and JavaScript, and Application to Distributed Deep Learning

Published 19 Mar 2015 in cs.DC, cs.LG, cs.MS, cs.NE, and stat.ML | (1503.05743v1)

Abstract: Deep learning can achieve outstanding results in various fields. However, it requires so significant computational power that graphics processing units (GPUs) and/or numerous computers are often required for the practical application. We have developed a new distributed calculation framework called "Sashimi" that allows any computer to be used as a distribution node only by accessing a website. We have also developed a new JavaScript neural network framework called "Sukiyaki" that uses general purpose GPUs with web browsers. Sukiyaki performs 30 times faster than a conventional JavaScript library for deep convolutional neural networks (deep CNNs) learning. The combination of Sashimi and Sukiyaki, as well as new distribution algorithms, demonstrates the distributed deep learning of deep CNNs only with web browsers on various devices. The libraries that comprise the proposed methods are available under MIT license at http://mil-tokyo.github.io/.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.