Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Kodaira dimension of complex hyperbolic manifolds with cusps (1503.05654v2)

Published 19 Mar 2015 in math.AG, math.DG, and math.GT

Abstract: We prove a bound relating the volume of a curve near a cusp in a hyperbolic manifold to its multiplicity at the cusp. The proof uses a hybrid technique employing both the geometry of the uniformizing group and the algebraic geometry of the toroidal compactification. There are a number of consequences: we show that for an $n$-dimensional toroidal compactification $\bar X$ with boundary $D$, $K_{\bar X}+(1-\frac{n+1}{2\pi}) D$ is nef, and in particular that $K_{\bar X}$ is ample for $n\geq 6$. By an independent algebraic argument, we prove that every hyperbolic manifold of dimension $n\geq 3$ is of general type, and conclude that the phenomena famously exhibited by Hirzebruch in dimension 2 do not occur in higher dimensions. Finally, we investigate the applications to the problem of bounding the number of cusps and to the Green--Griffiths conjecture.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.