Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adaptive Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology (1503.05378v2)

Published 18 Mar 2015 in math.NA, math-ph, and math.MP

Abstract: We develop the a posteriori error analysis of finite element approximations of implicit power-law-like models for viscous incompressible fluids. The Cauchy stress and the symmetric part of the velocity gradient in the class of models under consideration are related by a, possibly multi--valued, maximal monotone $r$-graph, with $\frac{2d}{d+1}<r<\infty$. We establish upper and lower bounds on the finite element residual, as well as the local stability of the error bound. We then consider an adaptive finite element approximation of the problem, and, under suitable assumptions, we show the weak convergence of the adaptive algorithm to a weak solution of the boundary-value problem. The argument is based on a variety of weak compactness techniques, including Chacon's biting lemma and a finite element counterpart of the Acerbi--Fusco Lipschitz truncation of Sobolev functions, introduced by L. Diening, C. Kreuzer and E. S\"uli [Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. SIAM J. Numer. Anal., 51(2), 984--1015].

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.