Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Least Squares Estimation-Based Synchronous Generator Parameter Estimation Using PMU Data (1503.05224v1)

Published 17 Mar 2015 in cs.SY

Abstract: In this paper, least square estimation (LSE)-based dynamic generator model parameter identification is investigated. Electromechanical dynamics related parameters such as inertia constant and primary frequency control droop for a synchronous generator are estimated using Phasor Measurement Unit (PMU) data obtained at the generator terminal bus. The key idea of applying LSE for dynamic parameter estimation is to have a discrete \underline{a}uto\underline{r}egression with e\underline{x}ogenous input (ARX) model. With an ARX model, a linear estimation problem can be formulated and the parameters of the ARX model can be found. This paper gives the detailed derivation of converting a generator model with primary frequency control into an ARX model. The generator parameters will be recovered from the estimated ARX model parameters afterwards. Two types of conversion methods are presented: zero-order hold (ZOH) method and Tustin method. Numerical results are presented to illustrate the proposed LSE application in dynamic system parameter identification using PMU data.

Citations (26)

Summary

We haven't generated a summary for this paper yet.