Quality Assessment of Linked Datasets using Probabilistic Approximation
Abstract: With the increasing application of Linked Open Data, assessing the quality of datasets by computing quality metrics becomes an issue of crucial importance. For large and evolving datasets, an exact, deterministic computation of the quality metrics is too time consuming or expensive. We employ probabilistic techniques such as Reservoir Sampling, Bloom Filters and Clustering Coefficient estimation for implementing a broad set of data quality metrics in an approximate but sufficiently accurate way. Our implementation is integrated in the comprehensive data quality assessment framework Luzzu. We evaluated its performance and accuracy on Linked Open Datasets of broad relevance.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.