Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 97 tok/s
GPT OSS 120B 455 tok/s Pro
Kimi K2 194 tok/s Pro
2000 character limit reached

Modem Illumination of Monotone Polygons (1503.05062v1)

Published 17 Mar 2015 in cs.CG

Abstract: We study a generalization of the classical problem of the illumination of polygons. Instead of modeling a light source we model a wireless device whose radio signal can penetrate a given number $k$ of walls. We call these objects $k$-modems and study the minimum number of $k$-modems sufficient and sometimes necessary to illuminate monotone and monotone orthogonal polygons. We show that every monotone polygon with $n$ vertices can be illuminated with $\big\lceil \frac{n-2}{2k+3} \big\rceil$ $k$-modems. In addition, we exhibit examples of monotone polygons requiring at least $\lceil \frac {n-2} {2k+3}\rceil$ $k$-modems to be illuminated. For monotone orthogonal polygons with $n$ vertices we show that for $k=1$ and for even $k$, every such polygon can be illuminated with $\big\lceil \frac{n-2}{2k+4} \big\rceil$ $k$-modems, while for odd $k\geq3$, $\big\lceil \frac{n-2}{2k+6} \big\rceil$ $k$-modems are always sufficient. Further, by presenting according examples of monotone orthogonal polygons, we show that both bounds are tight.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.