An upper bound on the k-modem illumination problem (1410.4099v1)
Abstract: A variation on the classical polygon illumination problem was introduced in [Aichholzer et. al. EuroCG'09]. In this variant light sources are replaced by wireless devices called k-modems, which can penetrate a fixed number k, of "walls". A point in the interior of a polygon is "illuminated" by a k-modem if the line segment joining them intersects at most k edges of the polygon. It is easy to construct polygons of n vertices where the number of k-modems required to illuminate all interior points is Omega(n/k). However, no non-trivial upper bound is known. In this paper we prove that the number of k-modems required to illuminate any polygon of n vertices is at most O(n/k). For the cases of illuminating an orthogonal polygon or a set of disjoint orthogonal segments, we give a tighter bound of 6n/k + 1. Moreover, we present an O(n log n) time algorithm to achieve this bound.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.