Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

An upper bound on the k-modem illumination problem (1410.4099v1)

Published 15 Oct 2014 in cs.CG

Abstract: A variation on the classical polygon illumination problem was introduced in [Aichholzer et. al. EuroCG'09]. In this variant light sources are replaced by wireless devices called k-modems, which can penetrate a fixed number k, of "walls". A point in the interior of a polygon is "illuminated" by a k-modem if the line segment joining them intersects at most k edges of the polygon. It is easy to construct polygons of n vertices where the number of k-modems required to illuminate all interior points is Omega(n/k). However, no non-trivial upper bound is known. In this paper we prove that the number of k-modems required to illuminate any polygon of n vertices is at most O(n/k). For the cases of illuminating an orthogonal polygon or a set of disjoint orthogonal segments, we give a tighter bound of 6n/k + 1. Moreover, we present an O(n log n) time algorithm to achieve this bound.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.