Papers
Topics
Authors
Recent
2000 character limit reached

Existence of positive solutions in the superlinear case via coincidence degree: the Neumann and the periodic boundary value problems (1503.04954v2)

Published 17 Mar 2015 in math.CA

Abstract: We prove the existence of positive periodic solutions for the second order nonlinear equation $u" + a(x) g(u) = 0$, where $g(u)$ has superlinear growth at zero and at infinity. The weight function $a(x)$ is allowed to change its sign. Necessary and sufficient conditions for the existence of nontrivial solutions are obtained. The proof is based on Mawhin's coincidence degree and applies also to Neumann boundary conditions. Applications are given to the search of positive solutions for a nonlinear PDE in annular domains and for a periodic problem associated to a non-Hamiltonian equation.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.