Papers
Topics
Authors
Recent
2000 character limit reached

Enhanced Image Classification With a Fast-Learning Shallow Convolutional Neural Network

Published 16 Mar 2015 in cs.NE, cs.CV, and cs.LG | (1503.04596v3)

Abstract: We present a neural network architecture and training method designed to enable very rapid training and low implementation complexity. Due to its training speed and very few tunable parameters, the method has strong potential for applications requiring frequent retraining or online training. The approach is characterized by (a) convolutional filters based on biologically inspired visual processing filters, (b) randomly-valued classifier-stage input weights, (c) use of least squares regression to train the classifier output weights in a single batch, and (d) linear classifier-stage output units. We demonstrate the efficacy of the method by applying it to image classification. Our results match existing state-of-the-art results on the MNIST (0.37% error) and NORB-small (2.2% error) image classification databases, but with very fast training times compared to standard deep network approaches. The network's performance on the Google Street View House Number (SVHN) (4% error) database is also competitive with state-of-the art methods.

Citations (84)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.