Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Minimal Active Inference Agent (1503.04187v1)

Published 13 Mar 2015 in cs.AI

Abstract: Research on the so-called "free-energy principle'' (FEP) in cognitive neuroscience is becoming increasingly high-profile. To date, introductions to this theory have proved difficult for many readers to follow, but it depends mainly upon two relatively simple ideas: firstly that normative or teleological values can be expressed as probability distributions (active inference), and secondly that approximate Bayesian reasoning can be effectively performed by gradient descent on model parameters (the free-energy principle). The notion of active inference is of great interest for a number of disciplines including cognitive science and artificial intelligence, as well as cognitive neuroscience, and deserves to be more widely known. This paper attempts to provide an accessible introduction to active inference and informational free-energy, for readers from a range of scientific backgrounds. In this work introduce an agent-based model with an agent trying to make predictions about its position in a one-dimensional discretized world using methods from the FEP.

Citations (9)

Summary

We haven't generated a summary for this paper yet.