Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From Group Recommendations to Group Formation (1503.03753v1)

Published 11 Mar 2015 in cs.IR and cs.DB

Abstract: There has been significant recent interest in the area of group recommendations, where, given groups of users of a recommender system, one wants to recommend top-k items to a group that maximize the satisfaction of the group members, according to a chosen semantics of group satisfaction. Examples semantics of satisfaction of a recommended itemset to a group include the so-called least misery (LM) and aggregate voting (AV). We consider the complementary problem of how to form groups such that the users in the formed groups are most satisfied with the suggested top-k recommendations. We assume that the recommendations will be generated according to one of the two group recommendation semantics - LM or AV. Rather than assuming groups are given, or rely on ad hoc group formation dynamics, our framework allows a strategic approach for forming groups of users in order to maximize satisfaction. We show that the problem is NP-hard to solve optimally under both semantics. Furthermore, we develop two efficient algorithms for group formation under LM and show that they achieve bounded absolute error. We develop efficient heuristic algorithms for group formation under AV. We validate our results and demonstrate the scalability and effectiveness of our group formation algorithms on two large real data sets.

Citations (52)

Summary

We haven't generated a summary for this paper yet.