Resonant Equilibrium configurations in quasi-periodic media: perturbative expansions (1503.03304v2)
Abstract: We consider 1-D quasi-periodic Frenkel-Kontorova models. We study the existence of equilibria whose frequency (i.e. the inverse of the density of deposited material) is resonant with the frequencies of the substratum. We study perturbation theory for small potential. We show that there are perturbative expansions to all orders for the quasi-periodic equilibria with resonant frequencies. Under very general conditions, we show that there are at least two such perturbative expansions for equilibria for small values of the parameter. We also develop a dynamical interpretation of the equilibria in these quasi-periodic media. We show that equilibria are orbits of a dynamical system which has very unusual properties. We obtain results on the Lyapunov exponents of the dynamical systems, i.e. the phonon gap of the resonant quasi-periodic equilibria. We show that the equilibria can be pinned even if the gap is zero.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.