Papers
Topics
Authors
Recent
Search
2000 character limit reached

Botnet Detection using Social Graph Analysis

Published 8 Mar 2015 in cs.SI and physics.soc-ph | (1503.02337v1)

Abstract: Signature-based botnet detection methods identify botnets by recognizing Command and Control (C&C) traffic and can be ineffective for botnets that use new and sophisticate mechanisms for such communications. To address these limitations, we propose a novel botnet detection method that analyzes the social relationships among nodes. The method consists of two stages: (i) anomaly detection in an "interaction" graph among nodes using large deviations results on the degree distribution, and (ii) community detection in a social "correlation" graph whose edges connect nodes with highly correlated communications. The latter stage uses a refined modularity measure and formulates the problem as a non-convex optimization problem for which appropriate relaxation strategies are developed. We apply our method to real-world botnet traffic and compare its performance with other community detection methods. The results show that our approach works effectively and the refined modularity measure improves the detection accuracy.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.