Botnet Detection using Social Graph Analysis
Abstract: Signature-based botnet detection methods identify botnets by recognizing Command and Control (C&C) traffic and can be ineffective for botnets that use new and sophisticate mechanisms for such communications. To address these limitations, we propose a novel botnet detection method that analyzes the social relationships among nodes. The method consists of two stages: (i) anomaly detection in an "interaction" graph among nodes using large deviations results on the degree distribution, and (ii) community detection in a social "correlation" graph whose edges connect nodes with highly correlated communications. The latter stage uses a refined modularity measure and formulates the problem as a non-convex optimization problem for which appropriate relaxation strategies are developed. We apply our method to real-world botnet traffic and compare its performance with other community detection methods. The results show that our approach works effectively and the refined modularity measure improves the detection accuracy.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.