Papers
Topics
Authors
Recent
2000 character limit reached

Linear Codes associated to Determinantal Varieties

Published 7 Mar 2015 in math.CO, cs.IT, math.AG, and math.IT | (1503.02207v1)

Abstract: We consider a class of linear codes associated to projective algebraic varieties defined by the vanishing of minors of a fixed size of a generic matrix. It is seen that the resulting code has only a small number of distinct weights. The case of varieties defined by the vanishing of 2 x 2 minors is considered in some detail. Here we obtain the complete weight distribution. Moreover, several generalized Hamming weights are determined explicitly and it is shown that the first few of them coincide with the distinct nonzero weights. One of the tools used is to determine the maximum possible number of matrices of rank 1 in a linear space of matrices of a given dimension over a finite field. In particular, we determine the structure and the maximum possible dimension of linear spaces of matrices in which every nonzero matrix has rank 1.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.