Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sparse Bayesian Dictionary Learning with a Gaussian Hierarchical Model

Published 7 Mar 2015 in cs.LG, cs.IT, and math.IT | (1503.02144v1)

Abstract: We consider a dictionary learning problem whose objective is to design a dictionary such that the signals admits a sparse or an approximate sparse representation over the learned dictionary. Such a problem finds a variety of applications such as image denoising, feature extraction, etc. In this paper, we propose a new hierarchical Bayesian model for dictionary learning, in which a Gaussian-inverse Gamma hierarchical prior is used to promote the sparsity of the representation. Suitable priors are also placed on the dictionary and the noise variance such that they can be reasonably inferred from the data. Based on the hierarchical model, a variational Bayesian method and a Gibbs sampling method are developed for Bayesian inference. The proposed methods have the advantage that they do not require the knowledge of the noise variance \emph{a priori}. Numerical results show that the proposed methods are able to learn the dictionary with an accuracy better than existing methods, particularly for the case where there is a limited number of training signals.

Citations (32)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.