Graphs of Systoles on hyperbolic surfaces (1503.01891v3)
Abstract: Given a hyperbolic surface, the set of all closed geodesics whose length is minimal form a graph on the surface, in fact a so-called fat graph, which we call the systolic graph. We study which fat graphs are systolic graphs for some surface (we call these admissible). There is a natural necessary condition on such graphs, which we call combinatorial admissibility. Our first main result is that this condition is also sufficient. It follows that a sub-graph of an admissible graph is admissible. Our second major result is that there are infinitely many minimal non-admissible fat graphs (in contrast, for instance, to the classical result that there are only two minimal non-planar graphs).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.