C*-Algebras of algebraic dynamical systems and right LCM semigroups
Abstract: We introduce algebraic dynamical systems, which consist of an action of a right LCM semigroup by injective endomorphisms of a group. To each algebraic dynamical system we associate a C*-algebra and describe it as a semigroup C*-algebra. As part of our analysis of these C*-algebras we prove results for right LCM semigroups. More precisely we discuss functoriality of the full semigroup C*-algebra and compute its K-theory for a large class of semigroups. We introduce the notion of a Nica-Toeplitz algebra of a product system over a right LCM semigroup, and show that it provides a useful alternative to study algebraic dynamical systems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.