Papers
Topics
Authors
Recent
Search
2000 character limit reached

Divisibility properties for weakly holomorphic modular forms with sign vectors

Published 3 Mar 2015 in math.NT | (1503.01134v1)

Abstract: In this paper, we prove some divisibility results for the Fourier coefficients of reduced modular forms of sign vectors. More precisely, we generalize a divisibility result of Siegel on constant terms when the weight is non-positive, which is related to the weight of Borcherds lifts when the weight is zero. By considering Hecke operators for the spaces of weakly holomorphic modular forms with sign vectors, and obtain divisibility results in an "orthogonal" direction on reduced modular forms.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.