Papers
Topics
Authors
Recent
2000 character limit reached

Stein's method for steady-state diffusion approximations of $M/Ph/n+M$ systems

Published 2 Mar 2015 in math.PR | (1503.00774v2)

Abstract: We consider $M/Ph/n+M$ queueing systems in steady state. We prove that the Wasserstein distance between the stationary distribution of the normalized system size process and that of a piecewise Ornstein-Uhlenbeck (OU) process is bounded by $C/\sqrt{\lambda}$, where the constant $C$ is independent of the arrival rate $\lambda$ and the number of servers $n$ as long as they are in the Halfin-Whitt parameter regime. For each integer $m>0$, we also establish a similar bound for the difference of the $m$th steady-state moments. For the proofs, we develop a modular framework that is based on Stein's method. The framework has three components: Poisson equation, generator coupling, and state space collapse. The framework, with further refinement, is likely applicable to steady-state diffusion approximations for other stochastic systems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.