Papers
Topics
Authors
Recent
Search
2000 character limit reached

Matrix Product State for Feature Extraction of Higher-Order Tensors

Published 2 Mar 2015 in cs.CV, cs.DS, and cs.LG | (1503.00516v4)

Abstract: This paper introduces matrix product state (MPS) decomposition as a computational tool for extracting features of multidimensional data represented by higher-order tensors. Regardless of tensor order, MPS extracts its relevant features to the so-called core tensor of maximum order three which can be used for classification. Mainly based on a successive sequence of singular value decompositions (SVD), MPS is quite simple to implement without any recursive procedure needed for optimizing local tensors. Thus, it leads to substantial computational savings compared to other tensor feature extraction methods such as higher-order orthogonal iteration (HOOI) underlying the Tucker decomposition (TD). Benchmark results show that MPS can reduce significantly the feature space of data while achieving better classification performance compared to HOOI.

Citations (37)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.