Papers
Topics
Authors
Recent
2000 character limit reached

Reducing ADC Sampling Rate with Compressive Sensing

Published 1 Mar 2015 in cs.IT and math.IT | (1503.00311v1)

Abstract: Many communication systems involve high bandwidth, while sparse, radio frequency (RF) signals. Working with high frequency signals requires appropriate system-level components such as high-speed analog-to-digital converters (ADC). In particular, an analog signal should be sampled at rates that meet the Nyquist requirements to avoid aliasing. However, implementing high-speed ADC devices can be a limiting factor as well as expensive. To mitigate the caveats with high-speed ADC, the solution space can be explored in several dimensions such as utilizing the compressive sensing (CS) framework in order to reduce the sampling rate to the order of information rate of the signal rather than a rate dictated by the Nyquist. In this note, we review the compressive sensing structure and its extensions for continuous-time signals, which is ultimately used to reduce the sampling rate of high-speed ADC devices. Moreover, we consider the application of the compressive sensing framework in wireless sensor networks to save power by reducing the transmission rate of sensor nodes. We propose an alternative solution for the CS minimization problem that can be solved using gradient descent methods. The modified minimization problem is potentially faster and simpler to implement at the hardware level.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.