Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adaptive estimation of the baseline hazard function in the Cox model by model selection, with high-dimensional covariates

Published 1 Mar 2015 in math.ST, stat.AP, and stat.TH | (1503.00226v2)

Abstract: The purpose of this article is to provide an adaptive estimator of the baseline function in the Cox model with high-dimensional covariates. We consider a two-step procedure : first, we estimate the regression parameter of the Cox model via a Lasso procedure based on the partial log-likelihood, secondly, we plug this Lasso estimator into a least-squares type criterion and then perform a model selection procedure to obtain an adaptive penalized contrast estimator of the baseline function. Using non-asymptotic estimation results stated for the Lasso estimator of the regression parameter, we establish a non-asymptotic oracle inequality for this penalized contrast estimator of the baseline function, which highlights the discrepancy of the rate of convergence when the dimension of the covariates increases.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.