Papers
Topics
Authors
Recent
2000 character limit reached

The Fidelity of Recovery is Multiplicative

Published 27 Feb 2015 in quant-ph, cs.IT, math-ph, math.IT, and math.MP | (1502.07973v2)

Abstract: Fawzi and Renner [Commun. Math. Phys. 340(2):575, 2015] recently established a lower bound on the conditional quantum mutual information (CQMI) of tripartite quantum states $ABC$ in terms of the fidelity of recovery (FoR), i.e. the maximal fidelity of the state $ABC$ with a state reconstructed from its marginal $BC$ by acting only on the $C$ system. The FoR measures quantum correlations by the local recoverability of global states and has many properties similar to the CQMI. Here we generalize the FoR and show that the resulting measure is multiplicative by utilizing semi-definite programming duality. This allows us to simplify an operational proof by Brandao et al. [Phys. Rev. Lett. 115(5):050501, 2015] of the above-mentioned lower bound that is based on quantum state redistribution. In particular, in contrast to the previous approaches, our proof does not rely on de Finetti reductions.

Citations (47)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.