On the microlocal analysis of the geodesic X-ray transform with conjugate points (1502.06545v1)
Abstract: We study the microlocal properties of the geodesic X-ray transform $\mathcal{X}$ on a manifold with boundary allowing the presence of conjugate points. Assuming that there are no self-intersecting geodesics and all conjugate pairs are nonsingular we show that the normal operator $\mathcal{N} = \mathcal{X}t \circ \mathcal{X}$ can be decomposed as the sum of a pseudodifferential operator of order $-1$ and a sum of Fourier integral operators. We also apply this decomposition to prove inversion of $\mathcal{X}$ is only mildly ill-posed in dimension three or higher.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.