Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Generalized and degenerate Whittaker models (1502.06483v5)

Published 23 Feb 2015 in math.RT

Abstract: We study generalized and degenerate Whittaker models for reductive groups over local fields of characteristic zero (archimedean or non-archimedean). Our main result is the construction of epimorphisms from the generalized Whittaker model corresponding to a nilpotent orbit to any degenerate Whittaker model corresponding to the same orbit, and to certain degenerate Whittaker models corresponding to bigger orbits. We also give choice-free definitions of generalized and degenerate Whittaker models. Finally, we explain how our methods imply analogous results for Whittaker-Fourier coefficients of automorphic representations. For $\mathrm{GL}n(F)$ this implies that a smooth admissible representation $\pi$ has a generalized Whittaker model $\mathcal{W}{\mathcal{O}}(\pi)$ corresponding to a nilpotent coadjoint orbit $\mathcal{O}$ if and only if $\mathcal{O}$ lies in the (closure of) the wave-front set $\mathrm{WF}(\pi)$. Previously this was only known to hold for $F$ non-archimedean and $\mathcal{O}$ maximal in $\mathrm{WF}(\pi)$, see [MW87]. We also express $\mathcal{W}{\mathcal{O}}(\pi)$ as an iteration of a version of the Bernstein-Zelevinsky derivatives [BZ77,AGS15a]. This enables us to extend to $\mathrm{GL_n}(\mathbb{R})$ and $\mathrm{GL_n}(\mathbb{C})$ several further results from [MW87] on the dimension of $\mathcal{W}{\mathcal{O}}(\pi)$ and on the exactness of the generalized Whittaker functor.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.