Papers
Topics
Authors
Recent
Search
2000 character limit reached

Modeling networks of spiking neurons as interacting processes with memory of variable length

Published 23 Feb 2015 in q-bio.NC | (1502.06446v1)

Abstract: We consider a new class of non Markovian processes with a countable number of interacting components, both in discrete and continuous time. Each component is represented by a point process indicating if it has a spike or not at a given time. The system evolves as follows. For each component, the rate (in continuous time) or the probability (in discrete time) of having a spike depends on the entire time evolution of the system since the last spike time of the component. In discrete time this class of systems extends in a non trivial way both Spitzer's interacting particle systems, which are Markovian, and Rissanen's stochastic chains with memory of variable length which have finite state space. In continuous time they can be seen as a kind of Rissanen's variable length memory version of the class of self-exciting point processes which are also called "Hawkes processes", however with infinitely many components. These features make this class a good candidate to describe the time evolution of networks of spiking neurons. In this article we present a critical reader's guide to papers dealing with this class of models, both in discrete and in continuous time. We briefly sketch results concerning perfect simulation and existence issues, de-correlation between successive interspike intervals, the longtime behavior of finite non-excited systems and propagation of chaos in mean field systems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.