Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the canonical divisor of smooth toroidal compactifications (1502.06258v5)

Published 22 Feb 2015 in math.AG, math.DG, and math.GT

Abstract: In this paper, we show that the canonical divisor of a smooth toroidal compactification of a complex hyperbolic manifold must be nef if the dimension is greater or equal to three. Moreover, if $n\geq 3$ we show that the numerical dimension of the canonical divisor of a smooth $n$-dimensional compactification is always bigger or equal to $n-1$. We also show that up to a finite \'etale cover all such compactifications have ample canonical class, therefore refining a classical theorem of Mumford and Tai. Finally, we improve in all dimensions $n\geq 3$ the cusp count for finite volume complex hyperbolic manifolds given in [DD15a].

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.