Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Ordinary and almost ordinary Prym varieties (1502.05959v3)

Published 20 Feb 2015 in math.NT and math.AG

Abstract: We study the $p$-rank stratification of the moduli space of Prym varieties in characteristic $p > 0$. For arbitrary primes $p$ and $\ell$ with $\ell \not = p$ and integers $g \geq 3$ and $0 \leq f \leq g$, the first theorem generalizes a result of Nakajima by proving that the Prym varieties of all the unramified ${\mathbb Z}/\ell$-covers of a generic curve $X$ of genus $g$ and $p$-rank $f$ are ordinary. Furthermore, when $p \geq 5$ and $\ell = 2$, the second theorem implies that there exists a curve of genus $g$ and $p$-rank $f$ having an unramified double cover whose Prym has $p$-rank $f'$ for each $\frac{g}{2}-1 \leq f' \leq g-2$; (these Pryms are not ordinary). Using work of Raynaud, we use these two theorems to prove results about the (non)-intersection of the $\ell$-torsion group scheme with the theta divisor of the Jacobian of a generic curve $X$ of genus $g$ and $p$-rank $f$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.