Papers
Topics
Authors
Recent
Search
2000 character limit reached

Path-dependent equations and viscosity solutions in infinite dimension

Published 19 Feb 2015 in math.PR | (1502.05648v3)

Abstract: Path-dependent PDEs (PPDEs) are natural objects to study when one deals with non Markovian models. Recently, after the introduction of the so-called pathwise (or functional or Dupire) calculus (see [15]), in the case of finite-dimensional underlying space various papers have been devoted to studying the well-posedness of such kind of equations, both from the point of view of regular solutions (see e.g. [15, 9]) and viscosity solutions (see e.g. [16]). In this paper, motivated by the study of models driven by path-dependent stochastic PDEs, we give a first well-posedness result for viscosity solutions of PPDEs when the underlying space is a separable Hilbert space. We also observe that, in contrast with the finite-dimensional case, our well-posedness result, even in the Markovian case, applies to equations which cannot be treated, up to now, with the known theory of viscosity solutions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.