Papers
Topics
Authors
Recent
2000 character limit reached

Euler class groups, and the homology of elementary and special linear groups

Published 18 Feb 2015 in math.KT | (1502.05424v3)

Abstract: We prove homology stability for elementary and special linear groups over rings with many units improving known stability ranges. Our result implies stability for unstable Quillen K-groups and proves a conjecture of Bass. For commutative local rings with infinite residue fields, we show that the obstruction to further stability is given by Milnor-Witt K-theory. As an application we construct Euler classes of projective modules with values in the cohomology of the Milnor Witt K-theory sheaf. For d-dimensional commutative noetherian rings with infinite residue fields we show that the vanishing of the Euler class is necessary and sufficient for a projective module P of rank d to split off a rank 1 free direct summand. Along the way we obtain a new presentation of Milnor-Witt K-theory.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.