Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

The Lorentzian proper vertex amplitude: Classical analysis and quantum derivation (1502.04640v2)

Published 16 Feb 2015 in gr-qc

Abstract: Spin foam models, an approach to defining the dynamics of loop quantum gravity, make use of the Plebanski formulation of gravity, in which gravity is recovered from a topological field theory via certain constraints called simplicity constraints. However, the simplicity constraints in their usual form select more than just one gravitational sector as well as a degenerate sector. This was shown, in previous work, to be the reason for the "extra" terms appearing in the semiclassical limit of the Euclidean EPRL amplitude. In this previous work, a way to eliminate the extra sectors, and hence terms, was developed, leading to the what was called the Euclidean proper vertex amplitude. In the present work, these results are extended to the Lorentzian signature, establishing what is called the Lorentzian proper vertex amplitude. This extension is non-trivial and involves a number of new elements since, for Lorentzian bivectors, the split into self-dual and anti-self-dual parts, on which the Euclidean derivation was based, is no longer available. In fact, the classical parts of the present derivation provide not only an extension to the Lorentzian case, but also, with minor modifications, provide a new, more four dimensionally covariant derivation for the Euclidean case. The new elements in the quantum part of the derivation are due to the different structure of unitary representations of the Lorentz group.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.