Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Invariants of the vacuum module associated with the Lie superalgebra gl(1|1) (1502.03511v2)

Published 12 Feb 2015 in math.RT, math-ph, math.CO, and math.MP

Abstract: We describe the algebra of invariants of the vacuum module associated with the affinization of the Lie superalgebra $\mathfrak{gl}(1|1)$. We give a formula for its Hilbert--Poincar\'{e} series in a fermionic (cancellation-free) form which turns out to coincide with the generating function of the plane partitions over the $(1,1)$-hook. Our arguments are based on a super version of the Beilinson--Drinfeld--Ra\"{i}s--Tauvel theorem which we prove by producing an explicit basis of invariants of the symmetric algebra of polynomial currents associated with $\mathfrak{gl}(1|1)$. We identify the invariants with affine supersymmetric polynomials via a version of the Chevalley theorem.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.